Land Degradation in Latin America and the Caribbean: A Framework to Measure its Costs

by

Mr. César Morales (Global Mechanism)
And
Ms. Soledad Parada (ECLAC)

United Nations Economic Commission for Latin America and the Caribbean
(ECLAC)

Note: This document has been reproduced in the form in which it was received, without formal editing. The opinions expressed are those of the authors and do not necessarily reflect the views of ESCWA.
LAND DEGRADATION IN LATIN AMERICA AND THE CARIBBEAN: A FRAMEWORK TO MEASURE ITS COSTS

BEIRUT, 25-27 March 2009
César Morales (Global Mechanism)
Soledad Parada (ECLAC)

THE CONTEXT IN LATIN AMERICA
EVOLUTION AND MAIN TRENDS IN L.A. OF AGRICULTURAL SECTOR BETWEEN 1990 - 2005

- **Good economic results** (sectoral rate of growth higher than the global economy)
- **Poor social results** (Poverty and extreme poverty worst than urban rates)
- **Poor results related the environment and natural resources:** deforestation, lost of biodiversity, desertification and degradation of natural resources

GROWTH MODALITY

- Few products (Cattle, soybean, fruits)
- Few producers (the most capitalized)
- Few markets
CONTRIBUTION OF THE AGRICULTURE SECTOR TO GLOBAL GROWTH

Latin America and the Caribbean: Growth Rates of Added Value of Agricultural sector (2000 - 2005)
Main changes in soil use between 1990 and 2005

- The forest area diminished around 69 million hectares
- The agricultural area growth around 26.5 millions hectares: 13.8 millions where dedicated to meadows and permanent pastures and 12.7 millions hectares to permanent crops and arable land.
- The number of cattle increased in 68.1 millions
- The soybean area increased around 22.4 millions hectares
The most important expansion is Soybean area (22.4 millions hectares)

A. LATINA Y CARIBE: EVOLUCION DE LA SUPERFICIE SEMBRADA

In USA, the soybean production reach the highest value in 2005 and then diminish while the Brazilian and Argentinean production increase strongly

EXPORTACIONES DE SOJA: PRINCIPALES PAISES
In Brazil the area expansion occurs mainly in central west region

The main part is produced by the biggest and the most capitalized producers
In Argentina the most dynamic soybean area in terms of growth, are the Provinces of Chaco, Entre Ríos and Santiago del Estero.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buenos Aires</td>
<td>2.396.800</td>
<td>182,5</td>
</tr>
<tr>
<td>Córdova</td>
<td>3.093.718</td>
<td>247,5</td>
</tr>
<tr>
<td>Chaco</td>
<td>592.309</td>
<td>1.184,6</td>
</tr>
<tr>
<td>Entre Ríos</td>
<td>1.247.900</td>
<td>2.277,2</td>
</tr>
<tr>
<td>La Pampa</td>
<td>164.700</td>
<td>549,0</td>
</tr>
<tr>
<td>Salta</td>
<td>381.500</td>
<td>399,5</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>1.566.290</td>
<td>78,8</td>
</tr>
<tr>
<td>Santiago del Estero</td>
<td>647.080</td>
<td>892,5</td>
</tr>
<tr>
<td>Tucumán</td>
<td>200.518</td>
<td>241,6</td>
</tr>
</tbody>
</table>

The forests

- Latin America and the Caribbean contributes with 23% of the total forest area in the world (924.2 millions of hectares).

- From this total 831.5 millions hectares are located in South America; 64.2 millions in Mexico; 22.4 en Central America, and 6.0 in the Caribbean.

- Temperate forests covers around 52 millions hectares located mainly in Argentina, Chile and Uruguay, and the highest areas in some tropical countries.
The forest area in LAC decrease rapidly; its rate of diminishing is more than the double of the rest of the world. The exception is the growth of the Caribbean region.

<table>
<thead>
<tr>
<th>Region</th>
<th>Area (1000 hectares)</th>
<th>Annual change (1000 Hectares)</th>
<th>Annual rate of change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caribbean</td>
<td>5.350</td>
<td>5.974</td>
<td>624</td>
</tr>
<tr>
<td>Mexico</td>
<td>69.016</td>
<td>64.238</td>
<td>-4.778</td>
</tr>
<tr>
<td>C. America</td>
<td>27.639</td>
<td>22.411</td>
<td>-5.228</td>
</tr>
<tr>
<td>S. America</td>
<td>890.818</td>
<td>831.540</td>
<td>-59.278</td>
</tr>
<tr>
<td>L. America and the Caribbean</td>
<td>992.823</td>
<td>924.163</td>
<td>-68.660</td>
</tr>
<tr>
<td>World</td>
<td>4.077.291</td>
<td>3.952.025</td>
<td>-3.682.066</td>
</tr>
</tbody>
</table>
Proportionally, C. America is the region more affected by deforestation in spite of the case of C. Rica (2000-2005)

Brazil in S. America followed by Venezuela, Bolivia, Ecuador Paraguay and Argentina, have the most important loses, while Chile and Uruguay have increased their forest area.
MEASURING DEGRADATION

- Few works to measure the economic and social impact of degradation in Lac and the world
- Existing works examine mainly erosion loses referred mainly to at local level
- Results obtained shows high values

In 2003 the Global Mechanism supported by W. Bank organized the following research;

ASSESSING THE EXTENT, COST AND IMPACT OF LAND DEGRADATION AT THE NATIONAL LEVEL: FINDINGS AND LESSONS LEARNED FROM SEVEN PILOT CASE STUDIES

L. Berry, J. Olson, and D. Campbell
The research included the following cases studies:

1. CHINA
2. ETIOPIA
3. MEXICO
4. UGANDA
5. RWANDA
6. CHILE
7. INDONESIA

Main findings

- Some countries can show good sustainable practices at low costs
- Exist a close relation between poverty and degradation
- A reduction of productivity causes by degradation (3% to 7% of Agricultural GDP)
- Investments required to remedy the situation are less than the cost of degradation
Applied policies can affect significantly

- Information about cost are insufficient, inconsistent and incomplete
- In spite of this, it is possible to initiate actions to combat degradation
- A clue recommendation refers to the policy framework in order to facilitate migration from more affected areas

<table>
<thead>
<tr>
<th>STUDY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Degradation</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>Etiopia</td>
</tr>
<tr>
<td>Mexico</td>
</tr>
<tr>
<td>Uganda</td>
</tr>
<tr>
<td>Rwanda</td>
</tr>
<tr>
<td>Chile (IV R)</td>
</tr>
<tr>
<td>Indonesia</td>
</tr>
</tbody>
</table>
OTHER STUDIES

- Costa Rica; Solórzano, 1991: 5 - 13,3% del VAA. Take in account erosion cost

- Mexico; McIntire, 1994 2,7% - 12,3% of Added Agric. Value in Corn. Take in account erosion costs

APPROACHES TO MEASURE AND DATA

- Relative Costs of availability and quality of water
- Costs of soil erosion
- Costs related to less productivity
- Indirect Costs
- Migration Costs
- Costs of mitigation
Scope and limitations

- Measures of erosion at local level does not take in account externalities (positive or not) for other locations (such as sedimentation).
- Does not measure other kind of degradation such erosion caused by wind and weed invasion, etc.
- Usually does not measure the long term impacts.
- Does not take in account poverty effects and migratory flows.

Measures at regional and national level

- Usually measure only production losses.
- Biodiversity losses are usually excluded.
- Poverty and malnutrition are not considered.
- Few occasions are take in account factor such as gender, ethnicity, income distribution and the relation between poverty and degradation.
- Opportunity cost are not take in account, specially related to some expensive crops and investments in non agriculture activities.
What was measured

I. Variations of natural capital: forest, land, water, flora and fauna
 - Environment services: Climatic factors regulation, water, landscape, Genetic capital

II. Variations of Economic capital
 Fix Capital
 Direct production Costs
 No direct Costs
 Opportunity Costs due to less investment in affected areas
 Costs of remediation
 Social and economical Variables (gender, ethnicity, etc)

III. Costs of infrastructure affected

IV. Human Capital:
 - Food, health, housing, etc.
 - Job/employment
 - Migration, remittances
 - Food insecurity

V. Social Capital
 - destruction of traditional knowledge and rural institutions
Study presented to CDS (ONU)

- Deforestation was measured
- Costs of Carbon liberation to atmosphere were made

Deforestation implies enormous losses because non-retained carbon liberated to atmosphere. In spite of it is difficult, losses can be estimated

<table>
<thead>
<tr>
<th>Estimations</th>
<th>Losses 1990 - 2005</th>
<th>Annual losses</th>
<th>Losses/added Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Price US$ 2.73/ ton CO2 (or US$ 10/ ton C)</td>
<td>68.604</td>
<td>4.573,6</td>
<td>3.3</td>
</tr>
<tr>
<td>b) Price US$ 6.8/ ton CO2</td>
<td>170.881</td>
<td>11.392</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Emissions of Methane (CH4) must be added to losses due to non retention of Carbon

- Between 1990 - 2005 cattle expanded in more than 68.1 millions of animals

- According estimatives made by some different scientific centers each animal produce at least 44 Kg of Methano (CH4) by year in semi extensive pastures.

- According that each year are emitted around 200.000 tons of methano. This component is much more toxic and difficult and expensive to eliminate than CO2

The importance of pricing Carbon in relation to the deforestation

- A recent research in Austria, developed a model of impact and determined the different levels of carbon prices in order to stop deforestation.

- A payment of an incentive of US$ 6 by hectare every 5 years in areas threatened by deforestation, could reduce this one in a 50%.

- The application of a tax of US$ 12 by deforested hectare, could also reduce to half the process.

- Predicting the deforestation-trend under different carbon prices, Georg E Kindermann, Michael Obersteiner, Ewald Rametsteiner, and Ian McCallum, 2006
Situation without prices for carbon (the dark color are deforested areas)

Predicting the deforestation trend under different carbon prices: Georg E. Kindermann1,2, Michael Obersteiner1,3, Ewald Rametsteiner1,2, and Ian McCallum1, 2006

Situation with price for carbon (12/tonelada US$)

Predicting the deforestation trend under different carbon prices: Georg E. Kindermann1,2, Michael Obersteiner1,3, Ewald Rametsteiner1,2, and Ian McCallum1, 2006
Given to the close relation Poverty/Degradation, it was settled down a theoretical frame based on the contributions of the approaches of family farmers. A simple explanatory model was constructed that it included as variable of adjustment, the over exploitation of the farmer’s family work and the migration. A model with trans logarithmic functions of production was considered to measure the effects the degradation on Land, Capital and Work and all the possible inter-relations between these variables.

The model was tested with the microdata of the Agricultural Census of Chile for IV the Region.

The results were the direct and crossed elasticities and their effects on T, K and L.

This allowed to measure the impact of overgrazing on land degradation and the consequences of degradation in terms of poverty.
ADVANTAGES

- This method is based on censuses and households surveys and all the countries have this information, which allows comparability.
- The model has been properly tested
- It is cost effective
- It is possible to include the effects of climatic change in the production.

LIMITATIONS

- It does not measure impact of externalities
- It does not consider mitigation costs and
- It does not consider indirect costs
The measurement using the model

- The production function allows to capture the effects of the loss of fertility, to which the costs of emission of GEI can be added exogenously, lost species (if the information exists), and a balance of the Costs/Benefits of the Migration.

The last contributions

FAO GLADA project
Global Assessment of Land Degradation and Improvement; Identification by remote sensing (2008)

Z G Bai, D L Dent, L Olsson, M E Schaepman
Land degradation is a global environment and development issue.

- Up-to-date, quantitative information is needed to support policy and action for food and water security, economic development, environmental integrity and resource conservation. To meet this need, the Global Assessment of Land Degradation and Improvement (GLADA) uses remote sensing to identify degrading areas and areas where degradation has been arrested or reversed. Within the parent LADA program, this screening will be followed up by field investigations to establish the situation on the ground.

Land degradation is defined as a long-term decline in ecosystem function and productivity and measured in terms of net primary productivity.

- Land degradation is cumulative – this is the global issue
- Analysis of 23-year GIMMS NDVI data reveals a declining trend across some 24 per cent of the global land area.
- Almost 20 per cent of degrading land is cropland - more than 20 per cent of all cultivated areas
Some 16 per cent of the land area shows an increase in climate-adjusted net primary productivity.

- There is only a weak correlation with biophysical factors other than land cover.
- About 1.5 billion people depend directly on the degrading areas.