Applications of Downscaling to Assess the Impacts of Climate Change on the Nile Basin Water Resources

Mohamed Elshamy
National DSS Specialist for Egypt, NBI

The Regional Workshop on Regional Climate Models Applications and Analysis
Beirut Lebanon, 2-4 July 2012
Egypt’s Vulnerability to Climate Change

- Coastal Zone
- Water Resources (Nile & Flash flooding)
- Agriculture
- Tourism
- Health
- Energy

Sea Level Rise

Hotter & Drier Weather

Nile Inflow Changes
The Nile Basin

- Large area (2.9 \times 10^6 \text{ km}^2)
- Low specific discharge
- Spans several climate regions
- Variable topography
- High runoff variability
- High sensitivity to climate
- Climate sensitivity varies

Example: 1961-1962 Rainfall over Equatorial Lakes
Sensitivity to Climate

![Graph showing flow change percentage against precipitation change percentage for different rivers: Atbara, Kagera, and Gilgel Abbay.](image)
Historical Rainfall Simulation

Source: LNDFC 2005
CC Impacts on Rainfall

Change in rainfall (mm/year)

ECHAM4 2040-’69

HADCM2 2040-’69

CSIRO 2040-’69

CGCM1 2040-’69

GFDL 2010-’49

NCAR 2010-’49

CCSR 2040-’69
Methodology for Climate Change Impact Studies

- Emissions
- Concentrations
- Radiative Forcing
- Global Circulation Models
- Regional Details (Downscaling)
- Impact Models (e.g. Hydrology)
- Observations

Scope
The Problem of Scale

Too Dynamic Atmosphere

High Computing Needs

Coarse Spatial Resolution

Parameterization Needed (Upscaling)

Impact Studies Require Local Info

Downscaling

Uncertainty
Downscaling Methods

Dynamic
- RCM Nesting
- Global Time Slice
- Stretching

Statistical
- Factors
- Regression
- Resampling
- Weather Typing
- Weather Generators

Hybrid
- RCM for a Single Weather Type
- Atmospheric Model with Disaggregated Rainfall

Based on Kilsby, 2000
Previous Studies (1)

• Strzepek et al. (1995, 1996)
 – 3 2xCO₂ Equilibrium GCM Scenarios
 – Changes range: -77% to +30% for Nile Yield
• Yates et al. (1996)
 – 3 Equilibrium + 1 Transient GCM scenarios
 – Changes range: -11% to +61% for Egypt’s Quota
• Conway and Hulme (1998)
 – 3 GCM scenarios (dry, wet, composite)
 – Changes range: -9% to +12% for Nile Yield
Previous Studies (2)

• Yates and Strzepek (1998)
 – 6 Equilibrium Scenarios (expected 2060)
 – 5 showed increased, the 6th showed 15% Reduction in Nile Yield

• Arnell (1999)
 – 6 Transient Scenarios from HadCM2 and HadCM3 till 2050
 – Increases in Rainfall are counterbalanced by increases in PET – little effect on the river discharge

• Elshamy (2000)
 – 16 Transient scenarios from 7 GCMs till 2050
 – Changes in Temperature: 2-4.3°C
 – Changes in Rainfall: -18% to +22%
Previous Studies (3)

- **Strzepek et al. (2001)**
 - 9 statistically (transient) derived scenarios from different climate models termed “non-implausible”
 - 8 predicted reductions to various degrees with only one showing a modest increase

- **Sayed (2004)**
 - 4 statistically derived scenarios using MAGICC-SCHENGEN based on the results of several GCMs
 - Changes range: -14% to 32% in Nile Yield by 2030

- **LNFDC (2008)**
 - 6 Transient scenarios from 3 GCMs and 2 Emission Scenarios
 - Statistically downscaled used a spatio-temporal weather generator
Application #1

STATISTICAL DOWNSCALING BASED ON WEATHER GENERATION
SDM - Dongola Flows

- Coarse Monthly GCM Rainfall
- SDM: Spatio-Temporal WG
- Fine-Scale Daily Rainfall
- NFS Hydrological Model

Flow at Dongola
10 Traces x 3 GCMs x 2 Scenarios

Compatible PET Scenarios
SDM-WG Concept

- **Spatial Resolution**: 5km x 5km grid resolution
 - 1st July
 - 2nd July
 - 3rd July

- **Temporal Resolution**: GCM Resolution
Methodology

- Global Climate Models’ Output:
 - Monthly Rainfall Data
 - Large Gridboxes (e.g. $2.5^\circ \times 3.75^\circ$)
- SDM Model developed to get:
 - Daily Data
 - Fine Resolution (5×5 km) NFS Scale
- SDM is Stochastic – Ensembles are used to sample the variability
Future Simulations – Decadal

HadCM3 – A2

HadCM3 – B2

CGCM2 – A2

CGCM2 – B2

ECHAM4 – A2

ECHAM4 – B2
Future Simulations – Annual & Summary

Uncertainty Analysis (1)

GLUE Analysis:
- Weights: NSE of monthly flows
- Looked at 95, 90, 75, 50, 25, 10, and 5 percentiles
- Analyzed A2 & B2 scenarios for each GCM separately (sample size: 10) then combined for 3 GCMs (sample size: 30)
Uncertainty Analysis (2)
Uncertainty Analysis (4)
Application #2

STATISTICAL DOWNSCALING USING BIAS CORRECTION
Metholodogy and Basin

- Coarse Daily GCM Rainfall
- Bias Correction Downscaling
- Fine-Scale Daily Rainfall
- NFS Hydrological Model
- Flow at Diem
 - 17 GCMs x 1 Scenario

Compatible PET Scenarios
Bias Correction Downscaling (1)

- Bias correction for downscaling rainfall (based on fitting the gamma distribution to daily rainfall)
- Simple bias correction for PET (ratio)
- NFS for hydrological modeling
- An ensemble approach (17 GCMs – A1B)
- Baseline 1961-90, Future 2081-98, Daily rainfall data & Monthly PET data
Bias Correction Downscaling (2)

Probability (CDF) vs Rainfall

GCM

Observed
Rainfall Distributions (Baseline)
Future Distributions

Uncertainty Analysis

GLUE Analysis:
- Weights: NSE of monthly flow/rainfall
- Looked at 95, 90, 75, 50, 25, 10, and 5 percentiles
- Sample size: 17
Flow vs Rainfall Changes

ΔQ = 3.0108 ΔR - 0.1474
R² = 0.9378

ΔQ = 3.2475 ΔR - 0.1002
R² = 0.9702
ΔPET = 0.0375 ΔT - 0.037

\[R^2 = 0.69 \]

ΔPET = 0.056 ΔT - 0.06

\[R^2 = 0.74 \]

Mean Annual Temperature Change (ΔT °C)

Mean Annual PET Change (ΔPET)

Mean JJAS Temperature Change (ΔT °C)

Mean JJAS PET Change (ΔPET)
Conclusions

- The Uncertainty is still high – several reasons
- Changes in precipitation range between -14% and +15%
- Changes in Temperature range between 2-5°
- Changes in PET range between +2-14%
- Changes in Flow range between -60% to +45%
- Simple linear relationships can be used as a fast-track method to assess the impacts
- Relative Contributions of Emission Scenarios, GCMs, and downscaling methods to the uncertainty bandwidth can be quantified – GCMs are responsible for the largest component
Way Forward

- Collaboration within the Nile Basin to exchange data and experience
- Translating Climate impacts into hydrological → agricultural → socio-economic, hydropower, ... impacts
- Expansion to other Emission Scenarios, RCMs, etc to better characterize the uncertainty
- Further research on uncertainty propagation to decision making – adaptation planning
Thank You
Nile Forecast System

Rain gauge Data → Satellite Images → Rainfall Estimation Models → Rainfall Estimates → Hydrological Models → Simulation and Extended Stream Flow Prediction (ESP) → Historical Climate

GIS