CO$_2$ storage session
UN-ESCWA / Masdar Meeting
6-7th November 2013

Dr Iain Macdonald
QCCSRC Programme Manager
Programme Overview

Multidisciplinary (Depts. Chemical Engineering & Earth Sciences and Engineering), 4 large carbon storage research projects, industry funded (Qatar Petroleum, Shell, Qatar Science and Technology Park), major science and technology transfer to Qatar, 10 years, $70M signed in 2008, involves >70 researchers.

Reservoir condition experiments (some with in-situ CT monitoring) allow fluid-fluid and fluid-rock interactions to be measured and models validated.

First 3D micro CT images of residual/capillary trapped super-critical CO₂ in carbonate rock.
Programme Overview

- Builds on earlier Clean Fossil Fuels Shell-Imperial Grand Challenge
- Expands fundamental research thereby reducing uncertainty, feedback from reservoir samples / data / observations from sequestration studies
- Providing improved predictive tools for carbon sequestration
- Local capacity building
 - transferring knowledge and technology (people and equipment)
- 4 leading-edge laboratories with £6M CAPEX
- Integrating world-leading petroleum / chemical engineers with simulator group
Developing a new palaeothermometer technique “clumped isotope” for reservoir application. This supports outcrop based reservoir and seal sedimentology fieldwork and geochemistry lab work focusing on relevant epochs and fracture related dolomitisation to provide rules for geological subsurface model building.

Mass Spectrometer with specific C atom detection cups and gas preparation lines

Thin sections of outcrop samples with Cathodluminescence microscopy to observe different optical properties

Extensive, synchronous extensional failure associated with fluid induced failure in an extensional stress regime.

Mountain outcrops act as reservoir analogues for the Middle East to understand geobody dimensions and fracture patterns
Seal Integrity
Providing a wide array of experimental data (e.g., phase behaviour, viscosity, density, pH, interfacial tension, contact angles, reaction rates / kinetics) at reservoir conditions of representative fluid mixtures for validating EoS (SAFT) and transport models (VW method).
Providing simplified micro-models to validate assumptions during imbibition and drainage to improve lattice Boltzmann and pore network model petrophysical property predictions.

HTHP micro-model validation of pore filling events.

Lattice Boltzmann CPU simulation of imbibition

Lattice Boltzmann multi GPU simulation of imbibition
Pioneering reservoir conditions petrophysical property measurements at pore and core scales and with multiphase and reactive flow.

Relative permeability etc.

Dynamic observations of reactive (dissolution) flow
Carbonate core after drainage and b –f as imbibition. Different colours are different CO₂ clusters

Overall CO₂ capillary (residual) trapping sandstones > carbonates, both significant ~ 70% of efficiency (the fraction of the initial scCO₂ which is trapped in place after waterflood; Sr/Si)
Pioneering reservoir conditions petrophysical property measurements at pore and core scales and with multiphase and reactive flow.

Key areas –
Contaminants – CO₂ injected not 100% pure......

Viscous versus capillary dominated flow regimes

Upscaling - Transboundary CO₂ / pressure
Revisiting traditional grid/block based geological models with specific flow units and developing finite element adaptive meshing incorporating new methods for capturing fractures and new geochemical models.

Reservoir flow units and outcrop models

Fluidity simulation of fluid dropping