Enabling Policies for Financing Energy Efficiency Investments

Innovative Public-Private Financing Mechanisms for Promoting EE investments at the National Level: The Tunisian Experience

14 – 15 April 2014
EE investment profitability

EE main market failures

Public – private financing mechanism for EE development

Example of Innovative financing mechanisms

Conclusion
EE investment profitability

Typology of projects

■ **Capitalistic projects**
 - Concentrated investment
 - Large investments
 - Limited number of investors
 - Low transaction cost for financing
 - Ex: cogeneration, process modification, etc.

■ **Decentralized projects**
 - Scattered market
 - Small investments
 - High transaction cost for financing
 - Ex: EE in building (SWH, envelop retrofitting, CFL, etc.)
EE investment profitability

Profitability factors

- Investment cost (KPEX)
- Operation cost (OPEX)
- Amount of saved energy compared to the investment
- End use energy tariffs

KPEX

OPEX

Saved energy
Energy tariffs

+ Profitability
EE main market failures
Mains barriers

Low profitability for the end user
- Energy tariff subsidies
- High KPEX
- High transaction cost

Investment access barriers
- Low capacity investment
- Limited access to bank financing

Market barriers
- Lack of information on technology
- Weakness of the local supply
EE main market failures
Energy tariff subsidy: case of Tunisia

Subsidy to energy in Tunisia in 2013 (% of final price)

Source: Alcor calculation from DGE and STEG data, 2014
EE main market failures
How to transform the market?

- Fair sharing benefits between State and end users
 - Displacing energy subsidy to EE investment support
 - Establish a Win-Win situation to create the market

- Remove the investment access barriers
 - Facilitating access to bank loans
 - Matching loan conditions to willingness to pay

- Awareness and technology information
- Supply side support and technology transfer
- End user protection
Public – private financing mechanism for EE development

Main components?

- Multi stakeholders mechanisms
- Public – private mechanisms
- Public support
 - Public investment subsidy
 - Indirect taxes advantage (VAT, customs duties, etc.)
 - Reduction of direct taxes : tax credit.
- Private financing
 - Credit system
 - Third Party Financing
Public – private financing mechanism for EE development

Public support

<table>
<thead>
<tr>
<th>Measures</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Applicability</th>
</tr>
</thead>
</table>
| **Investment public subsidy** | - Clear effect on the cost reduction
- Strong signal to the market
- Good vector for awareness
- Stimulation effect for supply side | - Pressure on the public finances
- Low sustainability
- High management cost
- Inflation risk | + |
| **Indirect taxes reduction** | - Easy implementation
- Low pressure on public finances | - Low visibility
- Low efficiency in case of informal market
- Difficulty to apply on services cost | ++ |
| **Reduction of Direct taxes** | - Low pressure on public finances
(only in case of taxes credit) | - Low efficiency in developing countries
- Complexity of implementation in developing countries | − |
| **Interest rate subsidy** | - Good vector of awareness
- Improve the profitability for the HH | - Currency risk coverage
- Sustainability of the interest subsidy
- Financial market distortion
- Pressure on public finance | − |
| **Credit guarantee systems** | - easy access to the credit
- Incentive for the banking sector | - Complexity of implementation in developing countries
- Risk of derive | − |
<table>
<thead>
<tr>
<th>Measures</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific credit mechanisms</td>
<td>- Reduce the capacity constraint investment ' - Mobilization of the banking sector ' - Good communication vector</td>
<td>- Exclusion of the unbanked population ' - Transaction costs and default payment risk</td>
<td>++</td>
</tr>
<tr>
<td>Specific credit lines</td>
<td>- Solve the problem of downstream resources ' - Involvement of banking sector ' - Good vector of awareness</td>
<td>- High cost of loan distribution and management ' - Exclusion of non banked households</td>
<td>++</td>
</tr>
<tr>
<td>Third Party Financing</td>
<td>- Associated to technical competences ' - Stimulate the supply side</td>
<td>- not adapted to small scattered investments ' - High transaction cost</td>
<td>–</td>
</tr>
</tbody>
</table>
Examples of Innovative financing mechanisms
Solar Water heater development mechanism in Tunisia: Prosol

- Started in 2005
- Public subsidy
 - Amount: 100 TND/m² (50 €/m²)
 - Fund sources: FNME operated by ANME
- Loan to consumer
 - 5 year duration
 - Reimbursed through the electricity bill
 - Reduced interest rate because of the Utility guarantee
 - Credit line provided by a private bank
- Quality control mechanism
 - Suppliers and installers accreditation
 - Installation control

Public subsidy: Profitable for the State
Examples of Innovative financing mechanisms
Solar Water heater development mechanism in Tunisia: Prosol

Installed capacity of SWH in Tunisia

Source: ANME, 2013
Examples of Innovative financing mechanisms

Roof insulation in Tunisia: PROMO-ISOL (under development)

- **Target:** roof insulation for existing and new dwellings

- **Public subsidy**
 - Amount: 4 TND/m² for new buildings and 3 TND for existing buildings
 - Maximum surface: 200 m² per dwelling
 - Fund sources: FNME

- **Loan component**
 - Interest rate: 7% to 7.5%
 - Duration: 5 to 7 years
 - Fund sources: private banks and specific credit lines from donors

![Diagram of the financing process](image)

Public subsidy: Profitable for the State

![Graph showing the time to return on public subsidy](image)
Examples of Innovative financing mechanisms

Other examples

- **PROSOL ELEC**: since 2010
 - Solar PV roof development in residential sector
 - Net metering
 - Public subsidy of 30% from FNME, operated by ANME
 - Loan from private bank but operated by the Utility (STEG)

- **PROMO-REF**: Idea under discussion
 - Up-scaling the renovation of existing low efficient refrigerators stocks
 - Win Wing public Subsidy to high efficient refrigerator purchasing
 - Bank loan operated by STEG
Mechanisms combining:

1. Financial instruments:
 - Win–Win Public subvention to improve project profitability for end-user
 - Indirect taxation measures
 - Bank credit over an enough long period to alleviate the payment capacity barrier
 - Sufficient upstream resources for both public subsidy and loan distribution

2. Institutional and organizational instruments
 - Simple and effective distribution system of loans;
 - Effective Operators, accredited to be eligible to the programs;
 - Effective quality control, but simple and cost-effective;
 - Accompanying measures including awareness and capacity building.
 - Coordinating agency to monitor all the mechanisms
Market rigidity: prices are determined by the subsidy and loan level
 ➡ Review the financial design frequently

Public management of the mechanism can become a bottleneck when the market grow quickly
 ➡ Private delegated management of the mechanism

Operation management cost can become exorbitant
 ➡ Rely on Technology of Information and Communication

Free rider suppliers with low quality
 ➡ Strict (but efficient) quality control
Thanks