Enhancing food security with increased water scarcity

Theib Oweis
Director, Integrated Water and Land Management Program, ICARDA, Amman, Jordan

Presentation at the Expert Group Meeting of the Water, Energy, Food security Nexus in the Arab region, Amman, March, 24-25, 2014

A region with multiple stresses

- Physical water scarcity
- Rapid NR degradation and desertification
- Groundwater depletion
- Drought
- Salinity
- Climate change

Decrease of the Souss aquifer level in Morocco
Region with multiple stresses

- Many countries with chronic water scarcity
- Water for agriculture in dry areas is declining
- Rapid NR degradation and desertification
- Climate change adds to the problems
- Energy competes
- Consequences

Agricultural water

- Agriculture uses most of the water
- Agricultural water is declining
- Mostly used with low productivity
New water … limited !!!!

- Surface, mostly tapped
- Ground, over exploited
- Marginal-quality, small amounts, environment, health
- Desalination, costly, environment, transport
- Water transfer, cost and politics

Conventional coping strategies: insufficient !!!

1. Increasing crop yield (land productivity)

Great !! but needs more water

Which is not available
2. Demand management/ pricing water

- Not working in this region
 - Politically and socially infeasible
 - Weak Institutions
- Innovative alternatives are needed

3. Increasing efficiency

\[
\text{Efficiency} = \frac{\text{Output}}{\text{Input}} \times 100\%
\]

- < 100% Implies losses during the process
- Applies to water, energy and food processes
- Attracts most of the attention
Irrigation efficiency: “real” vs “paper” saving/losses

Issues of irrigation efficiency

- Reflects the performance of the irrigation system (engineering aspects)
- Ignores recoverable losses!! energy requirements!
- Nothing to do with the return to water or energy (productivity)
- Wrongly used to judge the whole farm water management system
- Necessary to improve but will add a little more water at larger scale
4. Modernizing irrigation systems: The fallacy

- Meant for higher efficiency: not guaranteed
- Savings are not totally due to efficiency improvement

One can under irrigate
No DP / 100% application Eff
50% storage Eff.

One can over irrigate
100% storage efficiency
50% application efficiency

• Under irrigation
 – Application eff. 100%
 – Storage eff. 50%

• Over irrigation
 – Application eff. 50%
 – Storage eff. 100%
Modernizing irrigation: water savings!

- Does irrigation modernization save water? Yes
- Does increasing Irrigation Efficiency from 50% to 80% save 30% water? No
- Higher productivity is mainly associated with:
 - Provide better soil water due to frequent irrigation
 - Fertigation more frequent and uniform
 - Better weed control
- At cost: Investment, Maintenance, Skill
- Modernizing surface irrigation; ignored option

This is not to say that conventional approaches are not necessary... they help but can not overcome increasing agricultural water shortages in this region

A paradigm change is needed
From "efficiency" to "productivity"
Water productivity: the concept

\[WP = \frac{\text{Return}}{\text{Unit of water consumed}} \]

What return??
- Biomass, grain, meat, milk (kg)
- Income ($)
- Environmental benefits (C)
- Social benefits (employment)
- Energy (Cal)
- Nutrition (protein, carbohydrates, fat)

What water??
- Quality (EC)
- Location (GW depth)
- Time available

Consumed (depleted)
- Evaporation
- Transpiration
- Quality deterioration

Potential water productivity improvement

Nutritional WP Calories/m3

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>60</td>
<td>1000</td>
<td>650</td>
<td>3000</td>
<td>7999</td>
<td>1155</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>4000</td>
<td>1001</td>
<td>4469</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Nutritional WP Protein gr/m3

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>150</td>
<td>150</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Nutritional WP Calories/m3

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Lentil</th>
<th>Wheat</th>
<th>Potato</th>
<th>Olive</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>216</td>
<td>560</td>
<td>650</td>
<td>160</td>
<td>650</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>1150</td>
<td>1120</td>
<td>650</td>
<td>1120</td>
<td></td>
</tr>
</tbody>
</table>

24/03/2015
It takes a litre of water to produce every calorie

Scales and drivers to increase WP

- **At the basin level:**
 - competition among uses (Env., Ag., Dom.)
 - conflicts between countries
 - Equity issues

- **At the national level:**
 - food security
 - hard currency
 - sociopolitics

- **At the farm level:**
 - maximizing economic return
 - Nutrition in subsistence farming

- **At the field level:**
 - maximizing biological output
Potential WP improvements

- Reducing evaporation
- Improving management
- Enhancing genetic resources
- Great potential in developing countries

Potential practices

- Supplemental irrigation
- Deficit irrigation
- Germplasm
- Cultural practices
- Water harvesting
Tradeoffs between water & land productivity

$$y = -0.4278x^2 + 4.7328x - 0.543$$
$$R^2 = 0.7611$$

Strategic changes to reduce the impact of water shortage on agriculture

- Cropping patterns: change to be more water productive
- NRM Focus: from land to water
- Indicators: from efficiency to productivity
- Scale: from local to regional
- Policies: from reactive to proactive to foster change
It is a prime time for change !!!!

Thank you