Greenhouse gas market mechanisms as financing instruments for upscaling energy efficiency in the building sector

UN ESCWA Expert Group Meeting “Means to Upscale Energy Efficiency projects in the Building Sector”
Tunis, 25 September 2012

Axel Michaelowa, Perspectives Climate Change
michaelowa@perspectives.cc
Topics

- The immense potential for greenhouse gas reductions through buildings efficiency
- The CDM and buildings efficiency-related projects
- The benchmark baseline methodology for new buildings
- A nationally appropriate mitigation action (NAMA) for the Mexican housing sector
- Conclusion
Building sector: complex system

Source: WBCSD (2007)
Building efficiency: the sleeping giant

Mitigation potential by 2030

Project-based mechanisms

- Quantification of the emission reduction (baseline scenario minus project emissions):

![Graph showing GHG emissions over time](image)
The CDM project cycle

1. Project idea
2. Check of availability of applicable methodologies
3. PDD Development (incl. baseline scenario, additionality discussion, and monitoring plan)
4. Approval by host- and investor country
5. Validation: Selection of a Validator; Dialogue and Follow up until submission to CDM EB
6. Registration by CDM EB
7. Monitoring
 - Selection of a verifier
 - Detailed monitoring plan
 - Support with »Initial Verification«
8. Marketing of CERs
9. CER Issuance

CDM Project Cycle
Buildings efficiency under the mechanisms

- Eligible types of buildings efficiency activities?
 - Easier to go for subcomponents: lighting, air conditioners…

- How will the baseline be calculated?
 - Are approved methodologies and data available?

- Is replication of a single project possible?
 - Programme of Activities under CDM

- Revenue to be earned through the sale of emission credits?
 - Credit price levels

- Can policies generate revenues under a mechanism?
 - Supported and credited NAMAs
Buildings efficiency under the mechanisms

- **Single projects**: usually *small-scale CDM projects*
 - limited emission reduction $1,000 < 15,000$ tCO$_2$e per year
 - Methodologies AMS-II.E, II.Q, III.AE are available (<50 proj.)

- **Opportunities to scale up the emission reduction**
 - Bundling of *several small-scale projects*
 - Bundle up to $15,000$ tCO$_2$e per year
 - **Large scale methodology AM 0091**

- **CDM Programme of Activities (PoA)**
 - Unlimited number of activities of *same type* for up to 28 years

- Nationally Appropriate Mitigation Action (NAMA)
 - Mitigation policy for *whole sector* or sub-sector
 - Can be supported or credited NAMA
Case study

- **Hotel Sonar Bangla Sheraton and Towers**
 - Improved diesel boiler: 2.2 GWh p.a.
 - Demand-side management/renewables: 2.1 GWh p.a.
 - Improved air conditioners
 - Variable speed motors
 - Improved water pumping
 - Solar water heaters
 - $2.1 \text{ GWh} \times 1103 \text{ t CO}_2/\text{GWh} = 2316$ credits per year
 - Diesel savings: 671 credits per year
Development of credit price

Data source: Bluenext
Benchmarking on emission performance (tCO$_2$/m2)
- Performance comparison with buildings in “similar” circumstances

Bundle all measures and conservatively “aggregate” causality
- Implementation of a combination of technologies addressing
 - Electricity consumption
 - Fuel consumption
 - Chilled water consumption
 - Refrigeration
- Wider flexibility in technology choice
- Monitoring at a building level (not at an equipment level)

Benchmarking for baseline and additionality
Masdar City, Abu Dhabi

- First carbon neutral city
- 40,000 inhabitants
- Completion in 2025
Key elements of AM 0091

- Developed by Perspectives for Masdar
 - submitted to UNFCCC in March 2010
 - approved by CDM EB in June 2011 as AM 0091
 “Energy efficiency technologies and fuel switching in new buildings”

- Starting point: Baseline approach 48c
 - Single benchmark: the average emissions of top 20% performer buildings in similar circumstances built and occupied in the last 5 years
 - Emissions per gross floor area (GFA) (kgCO$_2$/m2)
CDM benchmark methodology for building efficiency

Cumulative frequency of building specific emissions (tCO2/m2)

Top 20% performers
Differentiating the benchmark

- Differentiation according to building categories
 - **Residential**: single-family, multi-family
 - **Commercial**: office, hotel, warehouse, mercantile...
 - **Institutional**: education, public assembly, health care..
 - **Mixed-use**: more than one function above

 ➢ One benchmark per building category, differentiated by low rise and high rise (> 3 storeys)
 - Heating / cooling degree days within range of ±20%
 - Building size within range of ±50%
 - Within the same socio-economic category
 - At least three categories
The CDM buildings methodology, the Middle East, and the future

- The MENA region would be **THE ideal region** for application of the methodology
 - Large-scale urbanization with **whole cities** built by a single developer
 - Good availability of data

- The methodology could be also applied in the context of **NAMAs**
 - Monitoring of buildings efficiency NAMA

- Perspectives would be happy to **collaborate with MENA governments/institutions/companies** to apply the methodology!
Mexican housing challenges

Housing stock in millions

Source: CONAVI, 2010
Mexican housing NAMA

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-sector</td>
<td>New residential houses (maximum 4 storeys and 8 units)</td>
</tr>
<tr>
<td>Measures and activities with direct impact on GHG emission reduction</td>
<td>Substantial up-scale of “Green mortgage” and “Ésta es tu casa” schemes through increased subsidies and more ambitious efficiency standards.</td>
</tr>
</tbody>
</table>
| **Measures and activities with indirect impact on GHG emission reduction** | Supportive actions for transformation of the “Green Mortgage” and "Ésta es tu casa" programmes into a **holistic urban planning process** including **building codes**
 • Building code pilot in 1 federal state
 • Promotion and enforcement of building codes across federal states over time
 • Capacity building
 • Extension of urban planning criteria and inclusion in the framework |
| **NAMA implementation and operation costs** | **Full costs** of substantial up-scaling of actions until 2020 |
| **NAMA type** | **Supported** NAMA (with the possibility of NAMA crediting for parts of the actions) |
Marginal cost of NAMA elements

- Mitigation cost
- Credit price

- AC, refrigerators
- Supported NAMAs
- Credited NAMAs
- Supported NAMAs

PV

Mitigation volume
Emission paths under different scenarios

- Current practice = 57.6 MtCO$_2$
- 12% = 50.9 MtCO$_2$
- 41% = 33.8 MtCO$_2$
- 18% = 47.2 MtCO$_2$
- 19% = 46.5 MtCO$_2$
- 28% = 41.4 MtCO$_2$
- 41% = 33.8 MtCO$_2$

Annual emissions in million tCO$_2$/a

- BAU Current Green Mortgage (37% coverage 2020)
- Scenario 1 (100% coverage 2020)
- Scenario 2 (100% coverage 2015)
- Scenario 3 (technology scale up)
- Scenario 4 (scenarios 1 and 3 combined)
- Current practice cumulative
Key Actors involved in shaping the NAMA

Host Country Government & Public and Private Institutions

Developed Country Government (= intl. Donor)

Foreign and domestic consultants

Communication

Host Country Government & Public and Private Institutions

- Host Country Government
- Public and Private Institutions

Developed Country Government

- Developed Country Government
- (= intl. Donor)

Foreign and domestic consultants

Communication

Host Country Government & Public and Private Institutions

- Host Country Government
- Public and Private Institutions

Developed Country Government

- Developed Country Government
- (= intl. Donor)

Foreign and domestic consultants

Communication

Host Country Government & Public and Private Institutions

- Host Country Government
- Public and Private Institutions

Developed Country Government

- Developed Country Government
- (= intl. Donor)

Foreign and domestic consultants

Communication

Host Country Government & Public and Private Institutions

- Host Country Government
- Public and Private Institutions

Developed Country Government

- Developed Country Government
- (= intl. Donor)

Foreign and domestic consultants

Communication

Host Country Government & Public and Private Institutions

- Host Country Government
- Public and Private Institutions

Developed Country Government

- Developed Country Government
- (= intl. Donor)

Foreign and domestic consultants

Communication
NAMA lessons from Mexico

- A good NAMA is long term and has a broad scope
- Avoid smallish “project-based” NAMA
- Integrate all relevant actors from the very beginning
- Assign clear roles and have strong moderator
- Host country ownership is a must
- Build NAMA upon existing activities as far as possible
- Ensure donor conditions do not choke off the NAMA
- Ensure relevant and sustainable donor contributions
- Take consultancy competition into account
Summary: Buildings under the market mechanisms

- To date, activity has been limited
 - Only some efficient lighting projects, very few whole building projects
- Methodologies for baseline setting/monitoring do exist
 - Data availability is challenging
- Current emission credit prices are very low
 - Upswing depends on overall global climate policy
 - Voluntary market is no real alternative
- New market mechanisms might open new doors
 - NAMA crediting?
Thank you!

Perspectives GmbH

Axel Michaelowa
michaelowa@perspectives.cc